United States Patent

US009098316B2

12 10) Patent No.: US 9,098,316 B2
’ ’
Comer et al. (45) Date of Patent: Aug. 4, 2015
(54) ROUTING FUNCTION CALLS TO 2005/0081184 Al 4/2005 Deedwaniya et al.
SPECIFIC-FUNCTION DYNAMIC LINK 2006/0284834 Al* 12/2006 Itkowitzetal. ... 345/156
2007/0006202 Al 1/2007 Mikkelsen et al.
LIBRARIES IN A GENERAL-FUNCTION 2007/0220502 Al 9/2007 Asselin et al.
ENVIRONMENT 2007/0220508 Al 9/2007 Thoelke
2007/0288913 Al  12/2007 Chou et al.
(75) Inventors: Alyson Ann Comer, Endicott, NY (US);
Gregory Raymond Fallon, Leeming OTHER PUBLICATIONS
(AU)
John Dumais; Forwarding DLLs Add Functions to Existing Soft-
(73) Assignee: International Business Machines ware; Oct. 1, 2000; 8 pages.™
Corporation, Armonk, NY (US) ) )
* cited by examiner
(*) Notice: Subject to any disclaimer, the term of this
%atserét llSSZ)((:):ILde? 603r2 a(li(gussted under 35 Primary Examiner — H S Sough
e M ys: Assistant Examiner — Kimberly Jordan
. 74) Attorney, Agent, or Firm — Thomas E Tyson; Mark P
(21) Appl. No.: 12/234,779 ey, Ag ¥
Kahler
(22) Filed: Sep. 22, 2008
(65) Prior Publication Data 7 ABSTRACT
US 2010/0077411 Al Mar. 25. 2010 A method and system for routing a function call to a core
’ dynamic link library (DLL) via a pass-through DLL. An
(51) Int.CL indication that an application requires a specific functionality
GO6F 9/44 (2006.01) is received. Using the indication, an initialization function
GO6F 9/46 (2006.01) internal to the pass-through DLL identifies a core DLL as
GO6F 9/445 (2006.01) providing the specific functionality. The core DLL is loaded
(52) US.CL into a memory. The pass-through DLL calls an internal pro-
CPC oo GOGF 9/44521 (2013.01)  cessing initialization function included in the core DLL. The
(58) Field of Classification Search pass-through DLL receives and stores an address of a list of
CPC GOGF 9/44521 pointers that reference a set of functions included in the core
See a hcatlon ﬁle forcomlete search histo DLL. The pass-through DLL receives a function call to a first
PP P 24 function in the set of functions. The pass-through DLL calls
(56) References Cited the first function by utilizing the address of the list of pointers
to identify a pointer that references the first function in the set
U.S. PATENT DOCUMENTS of functions.
5,797,015 A 8/1998 Daniels, Jr. et al.
7,100,172 B2 8/2006 Voellm et al. 4 Claims, 11 Drawing Sheets

DEFAULT INITIALIZATION FOR ROUTING A
FUNCTION CALL VIA A PASS-THROUGH
DYNAMIC LINK LIBRARY {DLL}

220

RECEIVE CORE DLL FUNCTION CALL FROM THE APPLICATION WITHOUT | 222
FIRST REGEIVING AN INDICATION OF A SPECIFIC FUNCTIONALITY
REQUIRED BY THE APPLIGATION

PASS-THROUGH DLL DETERMINES THAT ADDRESS OF LIST OF POINTERS | 224
(AKA, LIST OF FUNCTION POINTERS) TO CORE DLL FUNCTIONS
AVAILABLE TO THE APPLICATION IS NOT KNOWN

226

CALL INITIALIZATION FUNCTION INTERNAL TO PASS-THROUGH DLL TO
IDENTIFY WHICH CORE DLL IS NEEDED FOR REQUIRED FUNCTIONALITY

228

LOAD IDENTIFIED CORE DLL k

230
PASS-THROUGH DLL CALLS INTERNAL PROCESSING INITIALIZATION
FUNCTION IN THE LOADED CORE DLL

IN RESPONSE TO THE CALL IN STEP 230, PASS-THROUGH DLL RECEIVES 282
ADDRESS OF LIST OF FUNCTION POINTERS

POINTERS USING PARAMETERS SUPPLIED BY THE APPLICATION

36

234
(FASS-THROUGH DLL CALLS CORE DLL FUNCTION VIA LIST OF FUNCTION k
I/Z

! EXECUTE CORE DLL FUNCTION CALLED IN STEP 234

CONTROL RETURNS TO THE
APPLICATION

237 238

g




U.S. Patent

FIG. 1

Aug. 4, 2015 Sheet 1 of 11 US 9,098,316 B2
100
102
COMPUTING SYSTEM 108 1/
/ 106
PASS-THROUGH DYNAMIC LINK |
LIBRARY (DLL) 112 [¢ APPLICATION
7
INITIALIZATION FUNCTION
104
128 £
7 STORAGE UNIT
L ADDRESS OF LIST OF 130
| FUNCTION POINTERS /
! CORE DLL 1
i 134
! 110 /
E FUNCTION 130-1
: LOADEDCOREDLL 114
! INTERNAL PROCESSING 138
: TIALIZATION FUNCTIO
! INITIALIZATION FUNCTION 14 FUNCTION 130-M
! 116
: L PN
“-t»  LIST OF FUNCTION POINTERS
120
r==--t1 FUNCTION POINTER 1 [/ 132
: CORE DLLN
122 /138
{ ~4-r1 FUNCTION POINTERM FUNGTION 1321
;o 118
¥ p 140
B CORE DLL FUNGTIONS e FUNGTION 1321
e FUNCTION 1 /
: 126
RN FUNCTION M 4



U.S. Patent Aug. 4, 2015 Sheet 2 of 11 US 9,098,316 B2

SPECIFIC INITIALIZATION FOR ROUTING A 200

FUNCTION CALL VIA A PASS-THROUGH
DYNAMIC LINK LIBRARY (DLL)

|

RECEIVE INDICATION OF SPECIFIC FUNCTIONALITY
REQUIRED BY APPLICATION

202

A

CALL INITIALIZATION FUNCTION INTERNAL TO PASS-THROUGH DLL TO /204
IDENTIFY WHICH CORE DLL IS NEEDED FOR REQUIRED FUNCTIONALITY

il 206
LOAD IDENTIFIED CORE DLL 4
! 208

PASS-THROUGH DLL CALLS INTERNAL PROCESSING INITIALIZATION
FUNCTION IN THE LOADED CORE DLL

.

IN RESPONSE TO THE CALL IN STEP 208, 210
PASS-THROUGH DLL RECEIVES ADDRESS OF LIST OF POINTERS
TO CORE DLL FUNCTIONS AVAILABLE TO THE APPLICATION

il 212
CONTROL RETURNS TO THE APPLICATION

FIG. 24

214



U.S. Patent Aug. 4, 2015 Sheet 3 of 11 US 9,098,316 B2

DEFAULT INITIALIZATION FOR ROUTING A 220

FUNCTION CALL VIA A PASS-THROUGH
DYNAMIC LINK LIBRARY (DLL)

v

RECEIVE CORE DLL FUNCTION CALL FROM THE APPLICATION WITHOUT | 222
FIRST RECEIVING AN INDICATION OF A SPECIFIC FUNCTIONALITY
REQUIRED BY THE APPLICATION

v

PASS-THROUGH DLL DETERMINES THAT ADDRESS OF LIST OF POINTERS | 224
(A.K.A. LIST OF FUNCTION POINTERS) TO CORE DLL FUNCTIONS
AVAILABLE TO THE APPLICATION IS NOT KNOWN

|

226
CALL INITIALIZATION FUNCTION INTERNAL TO PASS-THROUGHDLLTO |~

IDENTIFY WHICH CORE DLL IS NEEDED FOR REQUIRED FUNCTIONALITY

l 228
LOAD IDENTIFIED CORE DLL 4
l 230

PASS-THROUGH DLL CALLS INTERNAL PROCESSING INITIALIZATION /
FUNCTION IN THE LOADED CORE DLL

|

2
IN RESPONSE TO THE CALL IN STEP 230, PASS-THROUGH DLL RECEIVES |~ 52

ADDRESS OF LIST OF FUNCTION POINTERS

'

234
PASS-THROUGH DLL CALLS CORE DLL FUNCTION VIA LIST OF FUNCTION |~

POINTERS USING PARAMETERS SUPPLIED BY THE APPLICATION

l 236
EXECUTE CORE DLL FUNCTION CALLED IN STEP 234 /
l 237 238

CONTROL RETURNS TO THE 4
APPLICATION

FIG. 2B




U.S. Patent Aug. 4, 2015 Sheet 4 of 11 US 9,098,316 B2

240

ROUTING A FUNCTION CALL VIA A PASS-
THROUGH DYNAMIC LINK LIBRARY (DLL)

il 242
REGEIVE CORE DLL FUNCTION GALL FROM APPLICATION

v

PASS-THROUGH DLL DETERMINES THAT ADDRESS OF LIST OF POINTERS | 244
(A.K.A. LIST OF FUNCTION POINTERS) TO CORE DLL FUNCTIONS
AVAILABLE TO THE APPLICATION IS KNOWN

l 246
PASS-THROUGH DLL CALLS CORE DLL FUNCTION VIA LIST OF FUNCTION |/

POINTERS USING PARAMETERS SUPPLIED BY THE APPLICATION

Il 248
EXECUTE CORE DLL FUNCTION CALLED IN STEP 246 d
' 249

CONTROL RETURNS TO THE APPLICATION

FIG. 2C

250



U.S. Patent Aug. 4, 2015 Sheet 5 of 11 US 9,098,316 B2

SETTING UP A PASS-THROUGH DYNAMIC 300

LINK LIBRARY (DLL) AND CORE DL.Ls

'

USING AN ORIGINAL DOCUMENTED DLL, PROCESS 302
FUNCTION CALLS FROM EXISTING APPLICATIONS VIA AN <
APPLICATION PROGRAMMING INTERFACE (AP)

!

IDENTIFY NEED FOR NEW FUNCTIONALITY ACCESSIBLE BY SAME AP,
WHERE NEW FUNCTIONALITY IS SEPARATE FROM FUNCTIONALITY
PROVIDED BY ORIGINAL DLL

304

' 306
RENAME ORIGINAL DLL TO IDENTIFY ORIGINAL DLL AS A FIRST CORE DLL

'

RECEIVE AND STORE ONE OR MORE OTHER CORE DLLs TO PROVIDE 308
THE NEW FUNCTIONALITY, WHERE EACH CORE DLL
HAS THE SAME NUMBER OF FUNCTIONS

v

GENERATE & STORE A PASS-THROUGH DLL HAVING THE SAME NAME AS |~
THE ORIGINAL DLL, WHERE THE PASS-THROUGH DLL
KNOWS THE NAMES OF THE CORE DLLs

310

y 312
LOAD PASS-THROUGH DLL 4
! 314
PERFORM INITIALIZATION AND ROUTE FUNCTION CALLS ,

VIA PASS-THROUGH DLL (SEE FIGS. 2A-2C)

316

FIG. 3



U.S. Patent Aug. 4, 2015 Sheet 6 of 11 US 9,098,316 B2

DYNAMICALLY CHANGING ROUTING OF 400

FUNCTION CALLS FROM A FIRST CORE DYNAMIC
LINK LIBRARY (DLL) TO A SECOND CORE DLL

|

PERFORM SPECIFIC INITIALIZATION FOR A FIRST SPECIFIC 402
FUNCTIONALITY REQUIRED BY AN APPLICATION AND ROUTE A FUNCTION
CALL TO A FIRST CORE DLL ACCORDINGLY (SEE FIG. 2A & FIG. 2C)

!

RECEIVE INDICATION OF A SECOND SPECIFIC FUNCTIONALITY 404
REQUIRED BY THE SAME APPLICATION

'

CALL INITIALIZATION FUNCTION INTERNAL TO PASS-THROUGHDLLTO L
IDENTIFY A SECOND CORE DLL THAT IS NEEDED FOR THE SECOND
SPECIFIC FUNCTIONALITY REQUIRED BY THE APPLICATION

406

l 408
UNLOAD FIRST CORE DLL AND LOAD SECOND CORE DLL
l 410
PERFORM SPECIFIC INITIALIZATION STEPS 208-212 OF FIG. 2A, L/

WHERE THE LOADED CORE DLL IS THE SECOND CORE DLL

l 412
IN RESPONSE TO THE APPLICATION CALLING A CORE DLL FUNCTION, |/

PERFORM FUNCTION CALL ROUTING STEPS 242-249 OF FIG, 2C

414

FIG. 4



US 9,098,316 B2

Sheet 7 of 11

Aug. 4, 2015

U.S. Patent

alojsuoioun] -
819
9'Jur niyjssed
7/
oLS
(1a HONOYHL-SSVd)
IdVa0o¥d
/

¢0s

S IO
S|l oS00 |e-1---
ris y T
y [45°] Lo
805 ol | ¢
By 880> -H{--+ |
......................... > PI0D3SB|l T PPE-> -f-{- -1
10J99A" 9109
y 0L5 9’loJjJu09 8102
90¢g
A ((11Q) AdvH8ET MNIT OINYNAQ 3HOO a3avoT)
08 1034090
005




U.S. Patent Aug. 4, 2015 Sheet 8 of 11 US 9,098,316 B2

600
604
z
PRODAPI
602 (PASS-THROUGH DLL)
yd 608
APPLICATION Z
core_set_state (on) —__| 1 passthru_init.c 612
open_file T £
™| core_set_state
SET core_state
CALL passthru_init
CORE02 2 614
(LOADED CORE DYNAMIC LINK
LIBRARY (DLL)) » passthru_init
618 - LOAD CORE DLL
ACCORDING TO
core_control.c 622 core_state:
£ OFF - COREO1
core_init o~ ON = CORE02
RETURN ADDRESS OF - CALL core_init TO
LIST OF FUNCTION OBTAIN LIST OF
POINTERS FUNCTION POINTERS
610
/620 passthru.c /616
file.c 624 *| open_file
open.file N - CALL passthru_init IF
VALIDATE \N gglhl'rng%F FUNCTION
E(EE/EMETESSNOPEN T~ CALL FUNCTION VIA
LIST OF FUNCTION
HANDLE POINTERS

FIG. 6



U.S. Patent Aug. 4, 2015 Sheet 9 of 11 US 9,098,316 B2
700
704
pd
PRODAPI
702 (PASS-THROUGH DLL)
yd 708
APPLICATION v
open_file - passthru_init.c 712
1 7
core_set_state
SET core_state
/706 CALL passthru_init
CORED1 214
(LOADED CORE DYNAMIC LINK
LIBRARY (DLL)) »| passthru_init
718 + LOAD CORE DLL
£ ACCORDING TO
core_control.c 722 core_state;

— £ 5 OFF = CORE01
core_ini || ON = COREQ2
RETURN ADDRESS OF B SR CALL core_init TO
LIST OF FUNCTION OBTAIN LIST OF
POINTERS FUNCTION POINTERS

5 710
/720 passthru.c 716
file.c T > open_file
open file + CALL passthru_init IF
| Y.
open e \N ggrh%g FUNCTION
PQR%MggfggNQPEN T CALL FUNCTION VIA
g E i LIST OF FUNGTION
AND POINTERS

FIG. 7




U.S. Patent

Aug. 4, 2015 Sheet 10 of 11 US 9,098,316 B2
800
802 a4 PRODAPI
6" en file passthru_init.c 812
pen_ile — | v
add_file_record ----- - core_set_state
close_filg -----em 814
passthru_init
806
/
LOADED CORE 810
DYNAMIC LINK LIBRARY " <
(DLL) \passthru.c 816-1
818 _ <
/ add_file_record
core_control.c. g22 - CALL passthru_init IF NO LIST
yd OF FUNCTION POINTERS
core_init . |-+ CALL FUNCTION VIA LIST OF
1| FUNCTION POINTERS
\ 816-2
820 close_file
fle.c ~ » CALL passthru_jnit IF NO LIST
' 8241 I OF FUNCTION POINTERS
. |-+ CALL FUNCTION VIA LIST OF
add_file_record 1"l FUNCTION POINTERS
824-2 816-3
close_file - »| open_file
824-3 - CALL passthru_init IF NO LIST
/ n+1 OF FUNCTION POINTERS
open_file < CALL FUNCTION VIA LIST OF
FUNCTION POINTERS

FIG. 8



U.S. Patent Aug. 4, 2015 Sheet 11 of 11 US 9,098,316 B2

102
/
COMPUTING SYSTEM
902
P /904
0
CPU MEMORY 914
/
i COMPUTER PROGRAM CODE
P 908 FOR FUNCTION CALL
> ROUTING TO A CORE
/906 DYNAMIC LINK LIBRARY (DLL)
N VIA A PASS-THROUGH DLL
/O INTERFACE
A A
910 104
v / \ 4
110 STORAGE
DEVICES UNIT

FIG. 9



US 9,098,316 B2

1
ROUTING FUNCTION CALLS TO
SPECIFIC-FUNCTION DYNAMIC LINK
LIBRARIES IN A GENERAL-FUNCTION
ENVIRONMENT

FIELD OF THE INVENTION

The present invention relates to a data processing method
and system for routing function calls to specific-function
dynamic link libraries in a general-function environment, and
more particularly to routing function calls to selected spe-
cific-function dynamic link libraries via a pass-through
dynamic link library.

BACKGROUND OF THE INVENTION

In conventional systems, introducing a new set of functions
that behave differently from an original set of functions
included in a dynamic link library includes providing a new
dynamic link library name or providing the functions in the
new set with names that are different from the functions in the
original set. These conventional schemes necessitate exten-
sive changes to applications that need to utilize the new set of
functions. For example, an application may need to be recom-
piled to utilize the new set of functions. Besides being time-
consuming and expensive to implement, the aforementioned
required changes pose a risk of causing the application to
malfunction (i.e., by introducing a software bug). Thus, there
exists a need to overcome at least one of the preceding defi-
ciencies and limitations of the related art.

SUMMARY OF THE INVENTION

The present invention provides a computer-implemented
method of routing a function call to a core dynamic link
library (DLL) via a pass-through DLL. A computing system
receives an indication that an application requires a specific
functionality. An initialization function internal to a pass-
through DLL included in the computing system identifies a
first core DLL as providing the required specific functional-
ity. Identifying the first core DLL includes selecting the first
core DLL from a set of core DLLs based on the received
indication. The first core DLL is loaded into a memory
coupled to the computing system. The pass-through DLL
calls an internal processing initialization function included in
the first core DLL. In response to the call of the internal
processing initialization function, the pass-through DLL
receives and stores an address of a list of pointers that refer-
ence a set of functions included in the first core DLL. The set
of functions includes a first function. From the application,
the pass-through DLL receives a function call to the first
function. The pass-through DLL calls the first function in
response to receiving the function call. Calling the first func-
tion includes utilizing the address of the list of pointers to
identify a pointer included in the list of pointers. The identi-
fied pointer references the first function in the set of functions.
Inresponse to the pass-through DLL calling the first function,
the first function is executed.

A system, computer program product, and process for sup-
porting computing infrastructure corresponding to the above-
summarized method are also described and claimed herein.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a system for routing function
calls to a core DLL via a pass-through DLL, in accordance
with embodiments of the present invention.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 2A is aflowchart of a specific initialization process for
routing a function call via a pass-through DLL that is imple-
mented in the system of FIG. 1, in accordance with embodi-
ments of the present invention.

FIG. 2B is a flowchart of a default initialization process for
routing a function call via a pass-through DLL that is imple-
mented in the system of FIG. 1, in accordance with embodi-
ments of the present invention.

FIG. 2C is a flowchart of a pass-through DLL-based func-
tion call routing process that is implemented in the system of
FIG. 1, in accordance with embodiments ofthe present inven-
tion.

FIG. 3 is a flowchart of a process of setting up a pass-
through DLL and core DLLs used in the processes of FIGS.
2A, 2B and 2C, in accordance with embodiments of the
present invention.

FIG. 4 is a flowchart of a process of dynamically changing
the routing of function calls that includes performing the
processes of FIG. 2A and FIG. 2C, in accordance with
embodiments of the present invention.

FIG. 5 is a block diagram illustrating an exemplary address
of'a list of function pointers that is utilized in the processes of
FIGS. 2A, 2B and 2C, in accordance with embodiments of the
present invention.

FIG. 6 is ablock diagram illustrating an exemplary specific
initialization included in the process of FIG. 2A, in accor-
dance with embodiments of the present invention.

FIG. 7 is a block diagram illustrating an exemplary default
initialization included in the process of FIG. 2B, in accor-
dance with embodiments of the present invention.

FIG. 8 is a block diagram illustrating examples of function
calls that occur subsequent to the specific initialization of
FIG. 6 or the default initialization of FIG. 7, in accordance
with embodiments of the present invention.

FIG. 9 is a block diagram of a computing system that is
included in the system of FIG. 1 and that implements the
processes of FIGS. 2A, 2B and 2C, in accordance with
embodiments of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

Overview

The present invention provides a method and system for
routing a software application’s function call via a pass-
through dynamic link library (DLL) to a function included in
a core DLL. The core DLL is selected from multiple core
DLLs according to functionality required by the application.
In one embodiment, the pass-through DLL allows an appli-
cation to exploit a system’s new functionality through the
same application programming interface the application uses
to exploit old functionality. For example, the new functional-
ity may provide additional or restricted processing to comply
with standards. A new function may be added to the pass-
through DLL to allow the application to indicate which func-
tionality (e.g., old functionality or new functionality) is
required. The DLL that provides the old functionality is
renamed and identified as one of the multiple core DLLs.
Another core DLL provides the new functionality. The origi-
nal name of the DLL that provides the old functionality is
given to the pass-through DLL, thereby allowing an applica-
tion to continue to use the original name and the same appli-
cation programming interface while exploiting either the old
or the new functionality.
Pass-Through DLL-Based System for Routing Function
Calls

FIG. 1 is a block diagram of a system for routing function
calls to a core DLL via a pass-through DLL, in accordance



US 9,098,316 B2

3

with embodiments of the present invention. System 100
includes a computing system 102, a computer data storage
unit 104 (e.g., direct access storage device) and a software
application 106 that is executing on computing system 102 or
another computing system (not shown).

Computing system includes a pass-through DLL 108 and a
core DLL 110 (ak.a. loaded core DLL) that is loaded into a
memory or virtual storage of computing system 102. Pass-
through DLL 108 includes an initialization function 112 that
calls an internal processing initialization function 114 inter-
nal to loaded core DLL 110. Loaded core DLL 110 also
includes a list of function pointers 116. The list of function
pointers 116 reference one or more core DLL functions 118,
which are one or more functions included in loaded core DLL
110. The list of function pointers 116 includes M function
pointers: function pointer 1, . . . , function pointer M (i.e.,
function pointer 120, . . ., function pointer 122). The core
DLL functions 118 include M functions: function 1, . . .,
function M (i.e., function 124, . . . , function 126). Function
pointer 1, . . ., function pointer M reference function 1, .. .,
function M, respectively. An address 128 (a.k.a. address of the
list of function pointers) is returned to the pass-through DLL
108 by the call by initialization function 112 to internal pro-
cessing initialization function 114. The address 128 refer-
ences the list of function pointers 116. Internal processing
initialization function 114 may also perform any initialization
required by the loaded core DLL 110.

In one embodiment, pass-through DLL 108 includes a
function to receive indication of specific functionality (not
shown) that may receive an indication from application 106
that the application requires a specific functionality provided
by one of the N core DLLs in storage unit 104. The function
to receive indication of specific functionality also calls ini-
tialization function 112.

Storage unit 104 includes N core DLLs: core DLL 1, .. .,
core DLL N (i.e.,core DLL. 130, ..., core DLL 132). Each of
the N core DLLs in storage unit 104 includes M functions:
core DLL function 1, . . . core DLL function m, such that an
i-th core DLL function of one core DLL of the N core DLLs
in storage unit 104 has the same name as the i-th core DLL
function of any other core DLL of the N core DLLs. Core
DLL 1 includes function 130-1, . . ., function 130-M (i.e.,
function 134, . . . , function 136). Core DLL N includes
function 132-1, . . . , function 132-M (i.e. function 138, . . .,
function 140). Although not shown in FIG. 1, the internal
processing initialization function 114 is included in each of
the N core DLLs in storage unit 104.

Pass-through DLL 108 also includes M wrapper functions
(not shown) that have the same names as the M core DLL
functions included in core DLL functions 118. A wrapper
function in pass-through DLL 108 checks if a list of function
pointers 116 is known to pass-through DLIL 108 and calls one
of the M functions in core DLL functions 118 based on the
called function having the same name as the wrapper func-
tion. Inan alternate embodiment, the wrapper function selects
the function to be called based on the ordinal position of the
function to be called within core DLL functions 118 matching
the ordinal position of the wrapper function within the M
wrapper functions.

A call of initialization function 112 identifies one of the N
core DLLs in storage unit 104 as the core DLL that provides
the functionality required by application 106. The identified
core DLL is loaded into memory or virtual storage of com-
puting system 102. After being loaded, the identified core
DLL is loaded core DLL 110. For example, if the execution of
initialization function 112 identifies core DLL 130 as the core
DLL that provides the functionality required by application

10

15

20

25

30

35

40

45

50

55

60

4

106, then core DLL 130 is loaded into memory or virtual
storage of computing system 102. Thus, in the example of this
paragraph, loaded core DLIL 110 is core DLL 130 and the M
functions included in core DLL 110 (i.e., function 124, . . .,
function 126) are the M functions included in core DLL 130
(i.e., function 134, . . . , function 136).

The functionality of the components of system 100 is fur-
ther described below relative to FIGS. 2A-2C, FIG. 3 and
FIG. 4.

Pass-Through DLL-Based Process for Routing Function
Calls

FIG. 2A is aflowchart of a specific initialization process for
routing a function call via a pass-through DLL that is imple-
mented in the system of FIG. 1, in accordance with embodi-
ments of the present invention. The specific initialization
process starts at step 200. In step 202, computing system 102
(see FIG. 1) receives an indication that application 106 (see
FIG. 1) requires a specific functionality provided by one of
the N core DLLs (i.e., core DLL 130, . . ., core DLL 132)
stored in storage unit 104 (see FIG. 1). In one embodiment, a
function to receive indication of specific functionality is
included in pass-through DLL 108 (see FIG. 1) and in step
202 receives the indication that the application requires the
specific functionality. In step 204, pass-through DLL 108
calls initialization function 112 (see FIG. 1) to identify which
of'the N core DLLs in storage unit 104 (see FIG. 1) is needed
to provide the specific functionality required by application
106 (see FIG. 1).

In one alternate embodiment, pass-through DLL 108 (see
FIG. 1) receives the aforementioned indication via an envi-
ronment variable. In another alternate embodiment, pass-
through DLL 108 (see FIG. 1) receives the aforementioned
indication via a configuration file that provides information
necessary to load the required core DLL from the storage unit
104 (see FIG. 1).

After identifying the core DLL needed to provide the spe-
cific functionality, the initialization function 112 (see FIG. 1)
loads (in step 206) the identified core DLL into a memory or
virtual storage coupled to computing system 102 (see FIG. 1).
In response to the loading performed in step 206, the identi-
fied core DLL becomes the loaded core DLL 110 of FIG. 1.

In step 208, the pass-through DLL 108 (see FIG. 1) calls
internal processing initialization function 114 (see FIG. 1),
which returns an address 128 (see FIG. 1) of the list of
function pointers 116 (see FIG. 1). In one embodiment, the
aforementioned function to receive indication of specific
functionality is included in pass-through DLL 108 (see FIG.
1) and calls initialization function 112 (see FIG. 1), which in
turn calls internal processing initialization function 114 (see
FIG. 1). In step 210, pass-through DLL 108 (see FIG. 1)
receives and stores the address 128 (see FIG. 1) being
returned by internal processing initialization function 114
(see FIG. 1). The list of function pointers 116 (see FIG. 1)
point to core DLL functions 118 (see FIG. 1) included in
loaded core DLL 110 (see FIG. 1). In step 212, control returns
to application 106 (see FIG. 1) and the specific initialization
process ends at step 214. Subsequent to the completion of the
specific initialization process of FIG. 2A, application 106
(see FIG. 1) makes a core DLL function call. As used herein,
a core DLL function call is defined as a call of one of the
functions in core DLL functions 118 (see FIG. 1) (i.e., a call
of one of the functions included in function 1, . . . , function M
of FIG. 1). The routing of the core DLL function call is
described below relative to FIG. 2C.

FIG. 2B is a flowchart of a default initialization process for
routing a function call via a pass-through DLL that is imple-
mented in the system of FIG. 1, in accordance with embodi-



US 9,098,316 B2

5

ments of the present invention. The default initialization pro-
cess begins at step 220. In step 222, computing system 102
(see FIG. 1) receives a core DLL function call from applica-
tion 106 (see FIG. 1) without previously receiving an indica-
tion from application 106 (see FIG. 1) that application 106
(see FIG. 1) requires a specific functionality provided by one
of'theN core DLLs stored in storage unit 104 (see FIG. 1). The
core DLL function call received in step 222 calls a core DLL
function included in core DLL functions 118 (see FIG. 1).
Application 106 (see FIG. 1) requires that the core DLL
function called in step 222 provide a default functionality
provided by a particular core DLL.

In step 224, a wrapper function in pass-through DLL 108
(see FIG. 1) that has the same name as the core DLL function
called in step 222 determines that the pass-through DLL has
no knowledge of address 128 (see FIG. 1). In the remaining
discussion of FIG. 2B, the wrapper function that has the same
name as the core DLL function called in step 222 is also
referred to as “the aforementioned wrapper function.” In step
226, the aforementioned wrapper function in pass-through
DLL 108 (see FIG. 1) initiates the default initialization pro-
cess by calling initialization function 112 (see FIG. 1) to
identify the core DLL in storage unit 104 (see FIG. 1) that
provides the default functionality required by application 106
(see FIG. 1).

After identifying the core DLL needed to provide the
default functionality, the initialization function 112 (see FIG.
1) loads (in step 228) the core DLL identified in step 226 into
amemory or virtual storage coupled to computing system 102
(see FIG.1). Inresponseto the loading performed in step 228,
the core DLL identified in step 226 becomes the loaded core
DLL 110 of FIG. 1.

In step 230, the initialization function 112 (see FIG. 1) calls
internal processing initialization function 114 (see FIG. 1) in
loaded core DLL 110 (see FIG. 1), which returns the address
128 (see FIG. 1) of the list of function pointers 116 (see FIG.
1). In step 232, in response to the call of the internal process-
ing initialization function 114 (see FIG. 1) in step 230, pass-
through DLL 108 (see FIG. 1) receives and stores the address
128 (see FIG. 1).

In step 234, the aforementioned wrapper function in pass-
through DLL 108 (see FIG. 1) calls the core DLL function
called in step 222 via the list of function pointers 116 (see
FIG. 1). That is, the pass-through DLL selects and utilizes a
pointer from list of function pointers 116 (see FIG. 1) that
references the core DLL function called in step 222. The
pass-through DLL selects the pointer from the list of function
pointers 116 (see FIG. 1) based on the name (or index) of the
core DLL function being called in step 222 matching the
name (or index) of the aforementioned wrapper function. The
pass-through DLL may also use one or more parameters in the
call of the core DLL function in step 234. The parameter(s)
are supplied to the pass-through DLL by application 106 (see
FIG. 1).

In step 236, computing system 102 executes the core DLL
function called in step 234. In step 237, control is returned to
application 106 (see FIG. 1) and the process of FIG. 2B ends
at step 238.

FIG. 2C is a flowchart of a pass-through DLL-based func-
tion call routing process that is implemented in the system of
FIG. 1, in accordance with embodiments ofthe present inven-
tion. The pass-through DLI-based call routing process starts
at step 240 with the condition that either the specific initial-
ization process of FIG. 2A or the default initialization process
of FIG. 2B has been completed prior to step 240.

In step 242, pass-through DLL 108 (see FIG. 1) receives a
core DLL function call from application 106 (see FIG. 1).

20

25

40

45

55

65

6

Hereinafter, in this section, the function called in step 242 is
also referred to as “the required core DLL function.”

In step 244, a wrapper function in pass-through DLL 108
(see FIG. 1) determines that the pass-through DLL has
knowledge of address 128 (see FIG. 1). In the remaining
discussion of FIG. 2C, the wrapper function in the pass-
through DLL that makes the determination in step 244 is
referred to simply as “the wrapper function.” In step 246, the
wrapper function in pass-through DLL 108 (see FIG. 1) calls
the required core DLL function via the list of function point-
ers 116 (see FIG. 1). That is, the pass-through DLL selects
and utilizes a pointer from list of function pointers 116 (see
FIG. 1) that references the required core DLL function. The
pass-through DLL selects the pointer from the list of function
pointers 116 (see FIG. 1) based on the name (or index) of the
core DLL function being called in step 242 matching the
name (or index) of the wrapper function. The pass-through
DLL may also use one or more parameters in the call of the
required core DLL function in step 246. The parameter(s) are
supplied to the pass-through DLL by application 106 (see
FIG. 1).

In step 248, computing system 102 executes the required
core DLL function in response to the call in step 246. In step
249, control is returned to application 106 (see FIG. 1) and the
process for routing a function call via a pass-through DLL
ends at step 250.

After step 250, the process of FIG. 2C may be repeated for
subsequent core DLL function calls.

Setting Up Pass-Through and Core DLLs

FIG. 3 is a flowchart of a process of setting up a pass-
through DLL and core DLLs used in the processes of FIGS.
2A-2C, in accordance with embodiments of the present
invention. The pass-through DLL and core DLL setup pro-
cess starts at step 300. In step 302, manual processing and
computing system 102 (see FIG. 1) process function calls
from existing applications (e.g., application 106 of FIG. 1) via
an application programming interface (API). The computing
system 102 (see FIG. 1) uses an original documented DLL
(ak.a. original DLL) to provide the functionality needed by
the existing applications. The API of the original DLL
includes functions that provide the functionality needed by
the existing applications. In step 304, manual processing and
computing system 102 (see FIG. 1) identify an application’s
need for new functionality that is accessible viathe same API.
The new functionality identified in step 304 is different and
separate from the functionality provided by the original DLL.

In step 306, manual processing and computing system 102
(see FIG. 1) rename the original DLL to identify the original
DLL as afirst core DLL (e.g., core DLL 1 of FIG. 1) stored in
storage unit 104 (see FIG. 1). In one embodiment, computing
system 102 stores the new name of the original DLL in
storage unit 104 (see FIG. 1).

In step 308, manual processing and computing system 102
(see FIG. 1) receive and store one or more other core DLLs
(e.g., core DLL N of FIG. 1) to provide the new functionality
identified in step 304. The one or more other core DLLs are
stored in storage unit 104.

In step 310, manual processing and computing system 102
(see FIG. 1) setup a pass-through DLL having the same name
as the original DLL had prior to step 306. The pass-through
DLL is configured to have knowledge of the name of the first
core DLL (i.e., the new name of the original DLLL) and the one
or more names of the one or more other core DLLs received
and stored in step 308. That is, the pass-through DLL is
generated to include wrapper functions having the same
names as the names of the functions that formed the API of the
original DLL. The pass-through DLL is generated in step 310



US 9,098,316 B2

7

to include initialization function 112 (see FIG. 1). In one
embodiment, the pass-through DLL is generated in step 310
to also include a function to receive indication of specific
functionality as described above relative to FIG. 1. Comput-
ing system 102 (see FIG. 1) stores the pass-through DLL in a
storage unit (e.g., storage unit 104 of FIG. 1). In step 312,
computing system 102 (see FIG. 1) loads the pass-through
DLL set up in step 310 into a memory or virtual storage
coupled to computing system 102 (see FIG. 1). The pass-
through DLL stored in the memory or virtual storage is pass-
through DLL 108 (see FIG. 1).

In step 314, computing system 102 performs specific and
default initializations as needed, and routes function calls via
pass-through DLL 108 (see FIG. 1) as described above rela-
tive to FIGS. 2A-2C. The process of FIG. 3 ends at step 316.

FIG. 3 describes the process for the initial implementation
of'system 100 (see FIG. 1). If system 100 (see FIG. 1) requires
one or more additional core DLLs at a future point in time, the
pass-through DLL may require minimal changes in order to
recognize when to use the one or more additional core DLLs.
Dynamically Changing Function Call Routing

FIG. 4 is a flowchart of a process of dynamically changing
the routing of function calls that includes performing the
processes of FIG. 2A and FIG. 2C, in accordance with
embodiments of the present invention. The dynamic function
call routing change process begins at step 400. In step 402,
computing system 102 (see FIG. 1) performs (1) steps 202-
212 of FIG. 2A to complete a specific initialization for a first
specific functionality that is required by application 106 (see
FIG. 1) and (2) steps 242-248 of FIG. 2C to route a first
function call to a first core DLL (e.g., core DLL 1 of FIG. 1)
that provides the first specific functionality.

In step 404, computing system 102 (see FIG. 1) receives an
indication that application 106 (see FIG. 1) requires a second
specific functionality which is different from the first specific
functionality. In step 406, pass-through DLL 108 (see FIG. 1)
calls initialization function 112 (see FIG. 1) to identify a
second core DLL (e.g., core DLL N of FIG. 1) that provides
the second specific functionality. The second core DLL is
different from the first core DLL.

In step 408, computing system 102 (see FIG. 1) unloads the
first core DLL from the memory or virtual storage used in step
206 (see FIG. 2A). Step 408 also includes the computing
system 102 (see FIG. 1) loading the second core DLL into the
aforementioned memory or virtual storage. In step 410, com-
puting system 102 (see FIG. 1) performs steps 208-212 of
FIG. 2A to complete an initialization for the second specific
functionality with the second core DLL being the loaded core
DLL. Subsequent to performing step 410, application 106
(see FI1G. 1) calls another core DLL function that provides the
second specific functionality (i.e., application 106 of FIG. 1
performs a second function call). In step 412, in response to
the second function call, computing system 102 (see FIG. 1)
performs steps 242-249 of FIG. 2C to route the second func-
tion call to the second core DLL, thereby completing a
dynamic change of the routing of function calls from the first
core DLL to the second core DLL. The process of FIG. 4 ends
at step 414.

Sample Address of a List of Function Pointers

FIG. 5is ablock diagram illustrating an exemplary address
of'a list of function pointers that is utilized in the processes of
FIGS. 2A, 2B and 2C, in accordance with embodiments of the
present invention. Example 500 includes a pass-through DLL
502 and a core DLL 504 loaded from storage unit 104 (see
FIG. 1) into a memory or virtual storage coupled to comput-
ing system 102 (see FI1G. 1). Pass-through DLL 502 is named
PRODAPI and core DLL 504 is named CORE(01. CORE01

10

15

20

25

30

35

40

45

50

55

60

65

8

includes a first component 506 (i.e., core_control.c) and a
second component 508 (i.e., file.c) that includes actual func-
tions. The file.c component includes functions such as an
add_file_record function 512 and a close_file function 514.

Each function in file.c that is part of the formal API is
referenced by a corresponding function pointer included in a
list of function pointers 510 (i.e., core_vector), which is
included in core_control.c. For example, the add_file_record
pointer in core_vector references the add_file_record func-
tion 512 and the close_file pointer in core_vector references
the close_file function 514.

The same core_control.c component having the same list
of function pointers (i.e., core_vector) is included in every
core DLL stored in storage unit 104 (see FIG. 1). Each list of
function pointers included in the core DLLs stored in storage
unit 104 (see FIG. 1) reference the functions that are available
to external callers (e.g., application 106 of FIG. 1). Any two of
the aforementioned lists of function pointers included in the
core DLLs stored in storage unit 104 (see FIG. 1) have the
same number of function pointers. Further, corresponding
entries in the aforementioned lists of function pointers have
identical formats. An entry in a first list of function pointers
addresses a first function that has the same name as a second
function addressed by a corresponding entry in a second list
of function pointers, but the first function may provide a
different functionality from the second function.

Pass-through DLL 502 includes an initialization compo-
nent 516 (i.e., passthru.init.c). During initialization in the
process of FIG. 2A or FIG. 2B, the address to the list of
function pointers 510 is assigned to a pointer 518 (i.e., func-
tionsCore) that resides in the pass-through DLL 502.

Since core DLL 504 is the core DLL that was selected from
the core DLLs in storage unit 104 (see FIG. 1) and loaded,
functionsCore addresses list 510 that includes pointers to
functions included in core DLL 504.

Specific Initialization

FIG. 6 is ablock diagram illustrating an exemplary specific
initialization included in the process of FIG. 2A, in accor-
dance with embodiments of the present invention. Example
600 includes an application 602, a pass-through DLL 604
(i.e., PRODAPI), and aloaded core DLL 606 (i.e., CORE02).
Application 602 uses functionality of a system that imple-
ments the API provided by PRODAPI. Pass-through DLL
604 includes an initialization component 608 (i.e., passthru_
init.c) and a function calling component 610 (i.e., passthru.c).
The passthru_init.c component includes a function 612 to
receive indication of specific functionality (i.e., core_set_
state) and a private initialization function 614 (i.e., passthru_
init). The passthru.c component includes a pass-through
function 616 (i.e., a wrapper function) that initiates the open-
ing of a file.

Core DLL 606 includes a first component 618 (i.e., core_
control.c) and a second component 620 (i.e., file.c). The core_
control.c component includes an internal processing initial-
ization function 622 (i.e., core_init). The file.c component
includes a function 624 (i.e., open_file) and may include one
or more other functions (not shown). Core DLL 606 provides
specific functionality that application 602 requires (e.g., addi-
tional processing to comply with a standards organization).

In example 600, application 602 indicates its need for a
specific set of functionality via a call to the core_set_state
function (i.e., function 612) (see arrow 1 in FIG. 6). The
core_set_state function sets an indicator (i.e., core_state) to
indicate the specific functionality that is required by applica-
tion 602 and that is provided by one of the core DLLs. In
alternate embodiments, the need for a specific set of function-
ality is indicated by environment variables or by external



US 9,098,316 B2

9

configuration files. The core_set_state function then calls the
private function 614 (i.e., a function internal to pass-through
DLL 604) passthru_init to complete the initialization (i.e.,
specific initialization) for the specific set of functionality (see
arrow 2 in FIG. 6).

From storage unit 104 (see FIG. 1), the passthru_init func-
tion retrieves (1) a first core DLL (i.e., COREO01) if the cor-
e_state is set to “OFF” or (2) a second core DLL (i.e.,
COREQ02) if the core_state is set to “ON”. In example 600,
core_state is set to “ON” and therefore COREO02 is loaded
(see core DLL 606).

The passthru_init function in the pass-through DLL 604
then calls core_init within core DLL 606 (see arrow 3 in FIG.
6). The core_init function is used only internally by pass-
through DLL 604. Further, the core_init function returns the
address of CORE02’s list of function pointers (e.g. list 510 in
FIG. 5) to pass-through DLL 604 and the returned address is
stored in a pointer (e.g. functionsCore in FIG. 5). Control then
returns to pass-through DLL 604 and then to application 602,
thereby completing the call to core_set_state.

After completing the call to core_set_state, application 602
starts using the API provided by the system that implements
PRODAPI. Application 602 initiates the opening of a file by
calling open_file within pass-through DLL 604 (see arrow 4
in FIG. 6). The corresponding open_file function 616 in pass-
through DLL 604 checks to ensure that the aforementioned
address of the list of function pointers is known by the pass-
through DLL. The open_{file function 616 then calls the open_
file function 624 in the loaded core DLL 606 with parameters
supplied as-is by application 602 (see arrow 5 in FIG. 6).

The open_file function 624 in the core DLL 606 is executed
by computing system 102 (see FIG. 1) to complete the open-
ing of the file. The execution of open_file function 624
includes validating the parameters included with the call to
function 624, opening the file, and returning the correspond-
ing file handle.

Default Initialization

FIG. 7 is a block diagram illustrating an exemplary default
initialization included in the process of FIG. 2B, in accor-
dance with embodiments of the present invention. Example
700 includes an application 702, a pass-through DLL 704
(i.e., PRODAPI) and a loaded core DLL 706 (i.e., COREO01).
Application 702 uses functionality of a system that imple-
ments the API provided by PRODAPI. Pass-through DLL
704 includes an initialization component 708 (i.e., passthru_
init.c) and a function calling component 710 (i.e., passthru.c).
The passthru_init.c component includes a function 712 to
receive indication of specific functionality (i.e., core_set_
state) and a private initialization function 714 (i.e., passthru_
init). The passthru.c component includes a pass-through
function 716 (i.e., a wrapper function) that initiates the open-
ing of a file.

Core DLL 706 includes a first component 718 (i.e., core_
control.c) and a second component 720 (i.e., file.c). The core_
control.c component includes an internal processing initial-
ization function 722 (i.e., core_init). The file.c component
includes a function 724 (i.e., open_file).

In example 700, application 702 is to run using a default
functionality that had been used in previous versions of the
application. The first function called by application 702 is
open_file (see arrow 1 in FIG. 7). Pass-through function 716
detects that CORE01’s list of function pointers is not known
to pass-through DLL 704 and in response, calls the private
function 714 (i.e., passthru_init; see arrow 2 in FIG. 7).

The global indicator core_state is set to “OFF” in example
700, and therefore the passthru_init function retrieves the
core DLL COREO01 (i.e., the default core DLL) from storage

10

15

20

25

30

35

40

45

50

55

60

65

10
unit 104 (see FIG. 1) and loads the default core DLL in
memory or virtual storage (see loaded core DLL 706).

The passthru_init function in the pass-through DLL 704
then calls core_init within core DLL 706 (see arrow 3 in FIG.
7). The core_init function is used only internally by pass-
through DLL 704. Further, the core_init function returns the
address of CORE01’s list of function pointers (e.g., list 510 in
FIG. 5) to pass-through DLL 704 and the returned address is
stored in a pointer (e.g. functionsCore 518 in FIG. 5). Using
a function pointer in COREO01’s list of function pointers that
addresses the open_file function 724, the wrapper function
716 calls the open_file function 724 with parameters supplied
as-is by application 702 (see arrow 4 in FIG. 7).

The open_{file function 724 in the core DLL 706 is executed
by computing system 102 (see FIG. 1). The execution of
open_file function 724 includes validating the parameters
included with the call to function 724, opening the file, and
returning the corresponding file handle.

Subsequent Function Calls

FIG. 8 is a block diagram illustrating examples of function
calls that occur subsequent to the specific initialization of
FIG. 6 or the default initialization of FIG. 7, in accordance
with embodiments of the present invention. The steps in
example 800 are performed after a specific initialization (see,
e.g., example 600 of FIG. 6) or after a default initialization
(see, e.g., example 700 of FIG. 7) is completed. Because
initialization has already occurred, the pass-through DLL has
knowledge of the core DLL’s list of function pointers (ak.a.
the known list of function pointers), and each function in the
pass-through DLL is simply looking up the address of a
corresponding function in the loaded core DLL and calling
that corresponding function. Unlike the initialization
examples in FIG. 6 and FIG. 7, other functions such as cor-
e_init and passthru_init are not involved in the function calls
in example 800.

Example 800 includes an application 802, a pass-through
DLL 804 (i.e., PRODAPI) and a loaded core DLL 806. Appli-
cation 802 uses functionality of a system that implements the
API provided by PRODAPI. Core DLL 806 may be, for
example, COREO01 (see core DLL 706 in FIG. 7) if example
800 is following a default initialization, or COREO02 (see core
DLL 606 in FIG. 6) if example 800 is following a specific
initialization. Pass-through DLL 804 includes an initializa-
tion component 808 (i.e., passthru_init.c) and a function call-
ing component 810 (i.e., passthru.c). The passthru_init.c
component includes a function 812 to receive indication of
specific functionality (i.e., core_set_state) and a private ini-
tialization function 814 (i.e., passthru_init). The passthru.c
component includes pass-through functions 816-1, 816-2 and
816-3 that initiate the adding of a record, the closing of a file,
and the opening of a file, respectively.

Core DLL 806 includes a first component 818 (i.e., core_
control.c) and a second component 820 (i.e., file.c). The core_
control.c component includes an internal processing initial-
ization function 822 (i.e., core_init). The file.c component
includes functions 824-1, 824-2 and 824-3 (i.e., add_fil-
e_record, close_file and open_file, respectively).

The first function called by application 802 via function
816-3 is open_{file (see arrow nin FI1G. 8). From the known list
of function pointers, function 816-3 uses the function pointer
that addresses the open_file function 824-3 to call the open_
file function 824-3 with parameters supplied as-is by appli-
cation 802 (see arrow n+1 in FIG. 8).

The second function called by application 802 via function
816-1 is add_file_record (see arrow n+2 in FIG. 8). From the
known list of function pointers, function 816-1 uses the func-
tion pointer that addresses the add_file_record function 824-1



US 9,098,316 B2

11

to call the add_file_record function 824-1 with parameters
supplied as-is by application 802 (see arrow n+3 in FIG. 8).

The third function called by application 802 via function
816-2 is close_file (see arrow n+4 in FIG. 8). From the known
list of function pointers, function 816-2 uses the function
pointer that addresses the close_file function 824-2 to call the
close_file function 824-2 with parameters supplied as-is by
application 802 (see arrow n+5 in FIG. 8).

Computing System

FIG. 9 is a block diagram of a computing system that is
included in the system of FIG. 1 and that implements the
processes of FIGS. 2A-2C, FIG. 3 and FIG. 4 in accordance
with embodiments of the present invention. Computing sys-
tem 102 generally comprises a central processing unit (CPU)
902, a memory 904, an input/output (I/O) interface 906, and
a bus 908. Further, computing system 102 is coupled to I/O
devices 910 and the computer data storage unit 104. CPU 902
performs computation and control functions of computing
system 102. CPU 902 may comprise a single processing unit,
or be distributed across one or more processing units in one or
more locations (e.g., on a client and server).

Memory 904 may comprise any known type of computer
data storage and/or transmission media, including bulk stor-
age, magnetic media, optical media, random access memory
(RAM), read-only memory (ROM), a data cache, a data
object, etc. In one embodiment, cache memory elements of
memory 904 provide temporary storage of at least some pro-
gram code in order to reduce the number of times code must
be retrieved from bulk storage during execution. Moreover,
similar to CPU 902, memory 904 may reside at a single
physical location, comprising one or more types of data stor-
age, or be distributed across a plurality of physical systems in
various forms. Further, memory 904 can include data distrib-
uted across, for example, a local area network (LAN) or a
wide area network (WAN).

1/O interface 906 comprises any system for exchanging
information to or from an external source. I/O devices 910
comprise any known type of external device, including a
display device (e.g., monitor), keyboard, mouse, printer,
speakers, handheld device, facsimile, etc. Bus 908 provides a
communication link between each of the components in com-
puting system 102, and may comprise any type of transmis-
sion link, including electrical, optical, wireless, etc.

1/O interface 906 also allows computing system 102 to
store and retrieve information (e.g., data or program instruc-
tions such as code 914) from an auxiliary storage device such
as computer data storage unit 104 or another computer data
storage unit (not shown). Computer data storage unit 104 may
be anon-volatile storage device, such as amagnetic disk drive
(i.e., hard disk drive) or an optical disc drive (e.g.,a CD-ROM
drive which receives a CD-ROM disk).

Memory 904 includes computer program code 914 that
provides the logic for routing a function call via a pass-
through DLL using specific or default initialization (e.g., the
process of F1G. 2C together with FIG. 2A or FIG. 2B), setting
up the pass-through and core DLLs (e.g., the process of FIG.
3), dynamically changing the routing of function calls from
one core DLL to another core DLL (e.g., the process of FIG.
4). Further, memory 904 may include other systems not
shown in FIG. 9, such as an operating system (e.g., Linux)
that runs on CPU 902 and provides control of various com-
ponents within and/or connected to computing system 102.

As will be appreciated by one skilled in the art, the present
invention may be embodied as a system, method or computer
program product. Accordingly, the present invention may
take the form of an entirely hardware embodiment, an entirely
software embodiment (including firmware, resident software,

10

15

20

25

30

35

40

45

50

55

60

65

12

micro-code, etc.) or an embodiment combining software and
hardware aspects that may all generally be referred to herein
asa“system” (e.g., system 100 of FIG. 1 or computing system
102). Furthermore, the present invention may take the form of
a computer program product embodied in any tangible
medium of expression (e.g., memory 904 or computer data
storage unit 104) having computer-usable program code (e.g.,
code 914) embodied in the medium.

Any combination of one or more computer-usable or com-
puter-readable medium(s) (e.g., memory 904 and computer
data storage unit 104) may be utilized. The computer-usable
or computer-readable medium may be, for example but not
limited to, an electronic, magnetic, optical, electromagnetic,
infrared or semiconductor system, apparatus, device or
propagation medium. A non-exhaustive list of more specific
examples of the computer-readable medium includes: an
electrical connection having one or more wires, a portable
computer diskette, a hard disk, a random access memory
(RAM), a read-only memory (ROM), an erasable program-
mable read-only memory (EPROM or Flash memory), an
optical fiber, a portable compact disc read-only memory (CD-
ROM), an optical storage device, a transmission media such
as those supporting the Internet or an intranet, or a magnetic
storage device. Note that the computer-usable or computer-
readable medium could even be paper or another suitable
medium upon which the program 914 is printed, as the pro-
gram 914 can be electronically captured via, for instance,
optical scanning of the paper or other medium, then com-
piled, interpreted, or otherwise processed in a suitable man-
ner, if necessary, and then stored in a computer memory 904.
In the context of this document, a computer-usable or com-
puter-readable medium may be any medium that can contain,
store, communicate, propagate, or transport the program for
use by or in connection with the instruction execution system,
apparatus, or device. The computer-usable medium may
include a propagated data signal with the computer-usable
program code embodied therewith, either in baseband or as
part of a carrier wave. The computer-usable program code
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc.

Computer program code (e.g., code 914) for carrying out
operations of the present invention may be written in any
combination of one or more programming languages, includ-
ing an object oriented programming language such as Java®,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely ona user’s computer (e.g., computing system
102), partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a remote
computer or entirely on the remote computer or server. In the
latter scenario, the remote computer may be connected to the
user’s computer through any type of network (not shown),
including a LAN, a WAN, or the connection may be made to
an external computer (e.g., through the Internet using an
Internet Service Provider).

The present invention is described herein with reference to
flowchart illustrations (e.g., FIGS. 2A-2C, FIG. 3 and FIG. 4)
and/or block diagrams of methods, apparatus (systems) (e.g.,
FIG. 1 and FIG. 9), and computer program products accord-
ing to embodiments of the invention. It will be understood
that each block of the flowchart illustrations and/or block
diagrams, and combinations of blocks in the flowchart illus-
trations and/or block diagrams, can be implemented by com-
puter program instructions (e.g., code 914). These computer
program instructions may be provided to a processor (e.g.,



US 9,098,316 B2

13

CPU 902) of a general purpose computer (e.g., computing
system 102), special purpose computer, or other program-
mable data processing apparatus to produce a machine, such
that the instructions, which execute via the processor of the
computer or other programmable data processing apparatus,
create means for implementing the functions/acts specified in
the flowchart and/or block diagram block or blocks.

These computer program instructions may also be stored in
a computer-readable medium (e.g., memory 904 or computer
data storage unit 104) that can direct a computer or other
programmable data processing apparatus to function in a
particular manner, such that the instructions stored in the
computer-readable medium produce an article of manufac-
ture including instruction means which implement the func-
tion/act specified in the flowchart and/or block diagram block
or blocks.

The computer program instructions may also be loaded
onto a computer (e.g., computing system 102) or other pro-
grammable data processing apparatus to cause a series of
operational steps to be performed on the computer or other
programmable apparatus to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

Any of the components of the present invention can be
deployed, managed, serviced, etc. by a service provider that
offers to deploy or integrate computing infrastructure with
respect to the method of routing a function call via a pass-
through DLL using specific or default initialization. Thus, the
present invention discloses a process for supporting computer
infrastructure, comprising integrating, hosting, maintaining
and deploying computer-readable code (e.g., code 914) into a
computing system (e.g., computing system 102), wherein the
code in combination with the computing system is capable of
performing a method of routing a function call via a pass-
through DLL using specific or default initialization.

In another embodiment, the invention provides a business
method that performs the process steps of the invention on a
subscription, advertising and/or fee basis. That is, a service
provider, such as a Solution Integrator, can offer to create,
maintain, support, etc. a method of routing a function call via
apass-through DLL using specific or default initialization. In
this case, the service provider can create, maintain, support,
etc. a computer infrastructure that performs the process steps
of the invention for one or more customers. In return, the
service provider can receive payment from the customer(s)
under a subscription and/or fee agreement, and/or the service
provider can receive payment from the sale of advertising
content to one or more third parties.

The flowcharts in FIGS. 2A-2C, FIG. 3 and FIG. 4, and the
block diagrams in FIG. 1 and FIG. 9 illustrate the architec-
ture, functionality, and operation of possible implementations
of'systems, methods, and computer program products accord-
ing to various embodiments of the present invention. In this
regard, each block in the flowchart or block diagrams may
represent a module, segment, or portion of code (e.g., code
914), which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in reverse order, depend-
ing upon the functionality involved. It will also be noted that
each block of the block diagrams and/or flowchart illustra-
tion, and combinations of blocks in the block diagrams and/or

10

20

25

30

35

40

45

50

55

60

65

14

flowchart illustration, can be implemented by special purpose
hardware-based systems that perform the specified functions
or acts, or combinations of special purpose hardware and
computer instructions.
While embodiments of the present invention have been
described herein for purposes of illustration, many modifica-
tions and changes will become apparent to those skilled in the
art. Accordingly, the appended claims are intended to encom-
pass all such modifications and changes as fall within the true
spirit and scope of this invention.
What is claimed is:
1. A computer-implemented method of routing a function
call to a core dynamic link library (DLL) via a pass-through
DLL, the method comprising:
routing, by a computing system, one or more function calls
from an application directly to one or more functions
included in an original DLL without utilizing any pass-
through DLL, wherein the one or more functions of the
original DLL provide an original functionality;
in response to routing the one or more function calls,
changing an original name of the original DLL to a
second name that identifies the original DLL as a second
core DLL;

in response to routing the one or more function calls,
receiving and storing one or more core DLLs that
include a first core DLL, wherein one or more functions
are included in each core DLL of the one or more core
DLLs, and wherein a number of the one or more func-
tions included in the original DLL is identical to a num-
ber of the one or more functions in each core DLL of the
one or more core DLLs;
in response to routing the one or more function calls, gen-
erating the pass-through DLL having the original name
of the original DLL;

in response to generating the pass-through DLL, loading
the pass-through DLL in a memory of the computing
system,

receiving, by the computing system, an indication that the

application requires a specific functionality;
in response to receiving the indication, identitying the first
core DLL as providing the specific functionality,
wherein identifying the first core DLL includes selecting
the first core DLL from the one or more core DLLs based
on the indication, and wherein identifying the first core
DLL is performed by an initialization function internal
to the pass-through DLL;

in response to identifying the first core DLL, loading the
first core DLL into the memory in the computing sys-
tem;
calling, by the pass-through DLL and in response to load-
ing the first core DLL, an internal processing initializa-
tion function included in the first core DLL;

receiving and storing, by the pass-through DLL and in
response to calling the internal processing initialization
function included in the first core DLL, an address of a
list of pointers that reference a plurality of functions
included in the first core DLL, wherein the plurality of
functions includes a first function;

receiving a first function call to the first function by the

pass-through DLL and from the application ;

calling the first function by the pass-through DLL, subse-

quent to receiving and storing the address and in
response to receiving the function call, wherein calling
the first function includes utilizing the address to iden-
tify a pointer included in the list of pointers, and wherein
the pointer references the first function in the plurality of
functions; and



US 9,098,316 B2

15

executing the first function in response to calling the first
function by the pass-through DLL;

receiving a second function call to a second function by the
pass-through DLL, from the application, and without a
prior receipt of an indication that the application
requires a second functionality provided by the second
core DLL of the one or more core DLLs;

determining that the pass-through DLL has no knowledge

of the list of pointers or any other list of pointers that
reference the one or more functions included in each
core DLL of the one or more core DLLs;

in response to determining that the pass-through DLL has

no knowledge of the list of pointers or any other list of
pointers, identifying the second core DLL as providing
the second functionality, wherein identifying the second
core DLL includes selecting the second core DLL from
the one or more core DLLs, and wherein identifying the
second core DLL is performed by the initialization func-
tion internal to the pass-through DLL;

in response to identifying the second core DLL, loading the

second core DLL into the memory;
calling, by the pass-through DLL and in response to load-
ing the second core DLL, an internal processing initial-
ization function included in the second core DLL;

receiving and storing, by the pass-through DLL and in
response to calling the internal processing initialization
function included in the second core DLL, a second
address of a second list of pointers that reference a
second plurality of functions included in the second core
DLL, wherein the second plurality of functions includes
the second function;

calling the second function by the pass-through DLI and in

response to receiving the second address, wherein call-
ing the second function includes utilizing the second
address to identify a pointer included in the second list of
pointers, and wherein the pointer included in the second
list of pointers references the second function in the
second plurality of functions, and;

executing the second function in response to calling the

second function by the pass-through DLL.
2. A computing system comprising a processor and a com-
puter-readable memory unit coupled to the processor, the
memory unit containing instructions that when executed by
the processor implement a method of routing a function call to
a core dynamic link library (DLL) via a pass-through DLL,
the method including:
routing one or more function calls from an application
directly to one or more functions included in an original
DLL without utilizing any pass-through DLL, wherein
the one or more functions of the original DLL provide an
original functionality;
in response to routing the one or more function calls,
changing an original name of the original DLL to a
second name that identifies the original DLL as a second
core DLL;

in response to routing the one or more function calls,
receiving and storing one or more core DLLs that
include a first core DLL, wherein one or more functions
are included in each core DLL of the one or more core
DLLs, and wherein a number of the one or more func-
tions included in the original DLL is identical to a num-
ber of the one or more functions in each core DLL of the
one or more core DLLs;

in response to routing the one or more function calls, gen-

erating the pass-through DLL having the original name
of'the original DLL;

20

25

30

40

45

50

16

in response to generating the pass-through DLL, loading
the pass-through DLL in a memory of the computing
system,

receiving, by the computing system, an indication that the
application requires a specific functionality;

in response to receiving the indication, identitying the first
core DLL as providing the specific functionality,
wherein identifying the first core DLL includes selecting
the first core DLL from the one or more core DLLs based
on the indication, and wherein identifying the first core
DLL is performed by an initialization function internal
to the pass-through DLL;

in response to identifying the first core DLL, loading the
first core DLL into the memory in the computing sys-
tem;

calling, by the pass-through DLL and in response to load-
ing the first core DLL, an internal processing initializa-
tion function included in the first core DLL;

receiving and storing, by the pass-through DLL and in
response to calling the internal processing initialization
function included in the first core DLL, an address of a
list of pointers that reference a plurality of functions
included in the first core DLL, wherein the plurality of
functions includes a first function;

receiving a first function call to the first function by the
pass-through DLL and from the application;

calling the first function by the pass-through DLL, subse-
quent to receiving and storing the address and in
response to receiving the function call, wherein calling
the first function includes utilizing the address to iden-
tify a pointer included in the list of pointers, and wherein
the pointer references the first function in the plurality of
functions;

executing the first function in response to calling the first
function by the pass-through DLL;

receiving a second function call to a second function by the
pass-through DLL, from the application, and without a
prior receipt of an indication that the application
requires a second functionality provided by the second
core DLL of the one or more core DLLs;

determining that the pass-through DLL has no knowledge
of the list of pointers or any other list of pointers that
reference the one or more functions included in each
core DLL of the one or more core DLLs;

in response to determining that the pass-through DLL has
no knowledge of the list of pointers or any other list of
pointers, identifying the second core DLL as providing
the second functionality, wherein identifying the second
core DLL includes selecting the second core DLL from
the one or more core DLLs, and wherein identifying the
second core DLL is performed by the initialization func-
tion internal to the pass-through DLL;

inresponse to identifying the second core DLL, loading the
second core DLL into the memory;

calling, by the pass-through DLL and in response to load-
ing the second core DLL, an internal processing initial-
ization function included in the second core DLL;

receiving and storing, by the pass-through DLL and in
response to calling the internal processing initialization
function included in the second core DLL, a second
address of a second list of pointers that reference a
second plurality of functions included in the second core
DLL, wherein the second plurality of functions includes
the second function;

calling the second function by the pass-through DLL and in
response to receiving the second address, wherein call-
ing the second function includes utilizing the second



US 9,098,316 B2

17

address to identify a pointer included in the second list of
pointers, and wherein the pointer included in the second
list of pointers references the second function in the
second plurality of functions, and;

executing the second function in response to calling the

second function by the pass-through DLL.
3. A computer program product, comprising a non-transi-
tory computer-readable storage medium having a computer-
readable program code stored therein, the computer-readable
program code containing instructions configured to be
executed by a processor of a computing system to implement
a method of routing a function call to a core dynamic link
library (DLL) via a pass-through DLL the method compris-
ing:
routing one or more function calls from an application
directly to one or more functions included in an original
DLL without utilizing any pass-through DLL, wherein
the one or more functions of the original DLL provide an
original functionality;
in response to routing the one or more function calls,
changing an original name of the original DLL to a
second name that identifies the original DLL as a second
core DLL;

in response to routing the one or more function calls,
receiving and storing one or more core DLLs that
include a first core DLL, wherein one or more functions
are included in each core DLL of the one or more core
DLLs, and wherein a number of the one or more func-
tions included in the original DLL is identical to a num-
ber of the one or more functions in each core DLL of the
one or more core DLLs;
in response to routing the one or more function calls, gen-
erating the pass-through DLL having the original name
of'the original DLL;

in response to generating the pass-through DLL, loading
the pass-through DLL in a memory of the computing
system,

receiving an indication that the application requires a spe-

cific functionality;
in response to receiving the indication, identifying the first
core DLL as providing the specific functionality,
wherein identifying includes selecting the first core DLL
from the one or more core DLLs based on the indication,
and wherein identifying is performed by an initialization
function internal to the pass-through DLL;

in response to identifying the first core DLL, loading the
first core DLL into the memory of the computing sys-
tem;
calling, by the pass-through DLL and in response to load-
ing the first core DLL, an internal processing initializa-
tion function included in the first core DLL;

receiving and storing, by the pass-through DLL and in
response to calling the internal processing initialization
function included in the first core DLL, an address of a
list of pointers that reference a plurality of functions
included in the first core DLL, wherein the plurality of
functions includes a first function;

receiving a function call to the first function by the pass-

through DLL and from the application;

calling the first function by the pass-through DLL, in

response to receiving and storing the address and in
response to receiving the function call, wherein calling
the first function includes utilizing the address to iden-
tify a pointer included in the list of pointers, and wherein
the pointer references the first function in the plurality of
functions; and

15

20

35

40

45

50

60

18

executing the first function in response to calling the first
function by the pass-through DLL;

receiving a second function call to a second function by the
pass-through DLL, from the application, and without a
prior receipt of an indication that the application
requires a second functionality provided by the second
core DLL of the one or more core DLLs;

determining that the pass-through DLL has no knowledge
of the list of pointers or any other list of pointers that
reference the one or more functions included in each
core DLL of the one or more core DLLs;

in response to determining that the pass-through DLL has
no knowledge of the list of pointers or any other list of
pointers, identifying the second core DLL as providing
the second functionality, wherein identifying the second
core DLL includes selecting the second core DLL from
the one or more core DLLs, and wherein identifying the
second core DLL is performed by the initialization func-
tion internal to the pass-through DLL;

inresponse to identifying the second core DLL, loading the
second core DLL into the memory;

calling, by the pass-through DLL and in response to load-
ing the second core DLL, an internal processing initial-
ization function included in the second core DLL;

receiving and storing, by the pass-through DLL and in
response to calling the internal processing initialization
function included in the second core DLL, a second
address of a second list of pointers that reference a
second plurality of functions included in the second core
DLL, wherein the second plurality of functions includes
the second function;

calling the second function by the pass-through DLL and in
response to receiving the second address, wherein call-
ing the second function includes utilizing the second
address to identify a pointer included in the second list of
pointers, and wherein the pointer included in the second
list of pointers references the second function in the
second plurality of functions, and;

executing the second function in response to calling the
second function by the pass-through DLL.

4. A computer-implemented method of routing a function

call to a core dynamic link library (DLL) via a pass-through
DLL, the method comprising:

routing, by a computing system, one or more function calls
from an application directly to one or more functions
included in an original DLL without utilizing any pass-
through DLL, wherein the one or more functions of the
original DLL provide an original functionality;

in response to routing the one or more function calls,
changing an original name of the original DLL to a
second name that identifies the original DLL as a second
core DLL;

in response to routing the one or more function calls,
receiving and storing one or more core DLLs that
include a first core DLL, wherein one or more functions
are included in each core DLL of the one or more core
DLLs, and wherein a number of the one or more func-
tions included in the original DLL is identical to a num-
ber of the one or more functions in each core DLL of the
one or more core DLLs;

in response to routing the one or more function calls, gen-
erating the pass-through DLL having the original name
of the original DLL;

in response to generating the pass-through DLL, loading
the pass-through DLL in a memory of the computing
system,



US 9,098,316 B2

19

receiving, by the computing system, an indication that the
application requires a specific functionality;

in response to receiving the indication, identifying the first
core DLL as providing the specific functionality,
wherein identifying the first core DLL includes selecting
the first core DLL from the one or more core DLLs based
on the indication, and wherein identifying the first core
DLL is performed by an initialization function internal
to the pass-through DLL;

in response to identifying the first core DLL, loading the
first core DLL into the memory in the computing sys-
tem;

calling, by the pass-through DLL and in response to load-
ing the first core DLL, an internal processing initializa-
tion function included in the first core DLL;

receiving and storing, by the pass-through DLL and in
response to calling the internal processing initialization
function included in the first core DLL, an address of a
list of pointers that reference a plurality of functions
included in the first core DLL, wherein the plurality of
functions includes a first function;

receiving a first function call to the first function by the
pass-through DLL, and from the application;

calling the first function by the pass-through DLL, subse-
quent to receiving and storing the address and in
response to receiving the function call, wherein calling
the first function includes utilizing the address to iden-
tify a pointer included in the list of pointers, and wherein
the pointer references the first function in the plurality of
functions; and

executing the first function in response to calling the first
function by the pass-through DLL.

#* #* #* #* #*

15

25

30

20



